Внедрение искусственного интеллекта в медицинские организации для дистанционного анализа лучевых исследований московской области

Проект в номинации

Цифровая трансформация здравоохранения: результативные проекты

Организация

ГКУ МО "ЦВИ МЗ МО"

Участники проекта

Трубицына Виктория Владимировна -

Руководитель проекта

Красногорск

Государственное казенное учреждение Московской области «Центр внедрения изменений Министерства здравоохранения Московской области

Забелин Максим Васильевич

Заместитель Председателя Правительства Московской области-министр здравоохранения Московской области, доктор медицинских наук Красногорск

Министерство здравоохранения Московской области

Бирюков Алексей Юрьевич

Первый заместитель министра здравоохранения Московской области Красногорск

Министерство здравоохранения Московской области

Сиднева Ирина Сергеевна

Заместитель министра здравоохранения Московской области

Красногорск

Министерство здравоохранения Московской области

Казин Егор Алексеевич

Директор

Красногорск

Государственное казенное учреждение Московской области «Центр внедрения изменений Министерства здравоохранения Московской области»

Квачев Сергей Сергеевич

Заместитель директора

Красногорск

Государственное казенное учреждение Московской области «Центр внедрения изменений Министерства здравоохранения Московской области»

Степанова Елена Александровна

Главный внештатный специалист по лучевой и инструментальной диагностике Министерства здравоохранения Московской области, заведующий отделом лучевой диагностики ГБУЗ Московской области «МОНИКИ им. М.Ф.

Владимирского, к.м.н., высшая категория

Москва

Министерство здравоохранения Московской области

Сорокина Наталья Юрьевна

Заместитель директора

Красногорск

Государственное бюджетное учреждение Московской области "Московский областной медицинский информационно-аналитический центр"

Оперативная интерпретация и представление результатов рентгенологических исследований при оценке неотложных состояний при помощи ИИ в Телерадиологии позволяет иметь незаменимый инструмент в условиях неотложной медицинской помощи, который значительно улучшает оказание медицинских услуг пациентам.

Описание проекта

В последние годы число пациентов в отделениях неотложной помощи (ОНП) неуклонно растёт, что связано с ростом населения, и увеличилось ещё больше во время пандемии COVID-19. Кроме того, ОНП могут быть переполнены во время стихийных бедствий, циклоны и наводнения в городских застройках. По данным исследований уровень медицинской помощи, предоставляемой в амбулаторных учреждениях за **2020 год**, общее число обращений в ОНП возрастает, что вызывает беспокойство. При ежегодном росте числа пациентов, обращающихся в ОНП, почти половина всех отделений работают на пределе своих возможностей или превышают их. Эта тенденция вызывает серьёзную обеспокоенность и требует решения.

Проблематика: только 8% исследований было описано при помощи искусственного интеллекта на конец 2023 г.

Объект: технологии искусственного интеллекта и их внедрение в процесс описания и диагностики по данным лучевых исследований Московской области.

Предмет проекта: методы и технологии, используемые для анализа и интеграции изображений (ФЛГ, ММГ, КТ и РГ) в медицинских организациях Московской области.

Цель:

Оценка эффективности внедрения систем искусственного интеллекта для разметки снимков

Актуальность:

Сокращение времени ожидания заключения по исследованиям и снижение нагрузки на врачей-рентгенологов.

Задачи:

- Определяет мелкие патологии (до 5% от общего числа), незаметные глазу врача;
- При использовании в качестве «второго прочтения» при оценке ММГ снижение нагрузки на врачей до 50%;
- Снижение врачебных ошибок в диагностически сложных случаях на 37,5%;
- Сокращение времени описания исследования врачом до 30% при использовании ИИ (до 2,6 минут).

Научная новизна:

- улучшение качества и точности диагностики за счет использования ИИ, способного выявлять малозаметные паттерны и аномалии на исследованиях, которые могут быть упущены при визуальном анализе.
- ●научное обоснование и практическая реализация методов, позволяющих значительно сократить время обработки исследований и выдачи заключений, что особенно важно в условиях высокой нагрузки на медицинский персонал.
- минимизация влияния человеческого фактора и субъективности при интерпретации медицинских изображений за счет использования объективных данных, обработанных ИИ.

Таким образом, основная цель проекта заключается в активном внедрение в работу ИИ, что позволит сократить время ожидания заключения по исследованиям и снизить нагрузку на врачей-рентгенологов.

Задачами проекта являются:

- определяет мелкие патологии (до 5% от общего числа), незаметные глазу врача;
- при использовании в качестве «второго прочтения» при оценке ММГ снижение нагрузки на врачей до 50%;
- снижение врачебных ошибок в диагностически сложных случаях на 37,5%;
- сокращение времени описания исследования врачом до 30% при использовании ИИ (до 2,6 минут).

Ожидаемые результаты

Теоретическая значимость от реализации проекта:

Исследования по улучшению качества и точности диагностики с использованием искусственного интеллекта (ИИ) в лучевой диагностике имеют высокую теоретическую значимость, так как они расширяют представления возможностях современных технологий В здравоохранении. Научное обоснование использования ИИ в выявлении малозаметных паттернов и аномалий на медицинских изображениях служит основой для дальнейшего изучения и разработки более совершенных алгоритмов обработки данных. Это, в свою очередь, может привести к созданию новых подходов в диагностике, что способствует улучшению теоретических основ радиологии, а также повышению уровня научных исследований в области медицинских технологий.

Практическая значимость от реализации проекта:

Практическая реализация методов, основанных на ИИ в лучевой диагностике Московской области, медицинских организаций позволяет значительно сократить время обработки рентгенологических исследований ОТР критически важно в условиях высокой заключений, нагрузки медицинский персонал. Выполнение 43 810 исследований с разметкой ИИ дало возможность снизить число врачебных ошибок в диагностически сложных случаях на 37,5% и сократить время описания исследования на 31% (до 2,5 минут). Эти результаты демонстрируют, как использование объективных данных,

обработанных ИИ, минимизирует влияние человеческого фактора и субъективности в интерпретации медицинских изображений, что, в свою очередь, повышает качество медицинских услуг и обеспечивает более быстрое реагирование на потребности пациентов.

Также улучшение качества и точности диагностики за счет использования ИИ, способного выявлять малозаметные паттерны и аномалии на исследованиях, которые могут быть упущены при визуальном анализе врачами.

- научное обоснование и практическая реализация методов, позволяющих значительно сократить время обработки исследований и выдачи заключений, что особенно важно в условиях высокой нагрузки на медицинский персонал.
- минимизация влияния человеческого фактора и субъективности при интерпретации медицинских изображений за счет использования объективных данных, обработанных ИИ.

Практическая реализуемость проекта (влияние на здоровье человека)

Оперативная интерпретация и представление врачам-рентгенологам результатов рентгенологических исследований при оценке специфических неотложных состояний являются важной частью диагностической парадигмы экстренных медицинских служб.

Путь исследования с разметкой ИИ:

- ●Этап 1: Обращение пациента. Пациент записывается на рентгенологическое исследование через онлайн-систему или напрямую в клинику.
- Этап 2: Проведение исследования. Рентгенологическое исследование выполняется, результаты фиксируются в электронном формате.
- Этап 3: Обработка данных ИИ. ИИ анализирует рентгеновские снимки, выявляет аномалии и генерирует предварительные
- Этап 4: Автоматическая проверка. Система автоматически проверяет результаты ИИ и отмечает, где требуется
- Этап 5: Получение заключения. Пациент получает уведомление о готовности заключения, значительно сократив время ожидания.

- Этап 6: Консультация с врачом. При необходимости врач-рентгенолог проводит дополнительную консультацию на основе данных, предоставленных ИИ.
- Этап 7: Улучшение потоков работы. Система позволяет врачам сосредоточиться на сложных случаях, снижая их нагрузку и повышая эффективность работы.

Использование искусственного интеллекта для разметки рентгенологических исследований существенно помогло снизить врачебные ошибки:

- Точность: ИИ-алгоритмы обучены на огромных наборах данных, что позволяет им распознавать патологические изменения на рентгеновских снимках с высокой точностью и минимальной вариабельностью. Это снижает вероятность пропуска важных деталей.
- Раннее выявление: ИИ может выявлять аномалии на ранних стадиях, когда они еще не проявляют явных симптомов. Это позволяет начать лечение на более ранних этапах, что часто приводит к лучшим исходам для пациентов.
- Облегчение нагрузки на врачей: Автоматизированная разметка снимков позволяет врачам тратить меньше времени на анализ изображений и сосредотачиваться на более сложных случаях и принятии решений.
- Непрерывное обучение и улучшение: ИИ-системы могут постоянно обучаться на новых данных, улучшая свои алгоритмы и точность разметки со временем.
- ●Контроль качества: ИИ может использоваться для контроля качества разметки, сравнивая результаты различных специалистов и выявляя возможные ошибки или недочеты.

Внедрение ИИ в рентгенологию помогло не только снизить количество ошибок, но и повысить качество и эффективность диагностики, улучшая таким образом общее состояние здоровья пациентов.

Стоимость реализации: От 50 млн до 100 млн ₽ на программное обеспечение по ИИ в Телерадиологии.

Целевая аудитория врачи медицинских организаций Московской области, а также жители Подмосковья с хронической сердечной недостаточностью Московской области.

Ключевые результаты по проекту «Телерадиология»: создан Единый центр дистанционного описания рентгенологических исследований. Штат Центра включает 48 врачей, мощность Единого центра дистанционного описания за 2024 год увеличена с 10 186 до 33 058 описаний снимков в месяц, 239 500 исследований из 39 ЛПУ описаны дистанционно с начала года. 628 единиц активного оборудования подключено к Центральному архиву медицинских исследований, 319 из них - с начала года. Проведено 288 297 исследований с разметкой Искусственным интеллектом.

Ресурсами являлись сотрудники Министерства здравоохранения и члены рабочей группы проекта, состоящие из сотрудников ГКУ МО "ЦВИ МЗ МО", ГБУ МО "МОМИАЦ" и Центра управления регионом.